Hi,
I’m trying to prove the following formula (from Leo Dorst’s book) :
(x \rfloor A^{-1}) A = (x \rfloor A^{-1}) \rfloor A
I considered R^4 and used an orthogonal basis, x is a vector and A is a blade (I test all available grades) :
x = x^{1} \boldsymbol{e}_{1} + x^{2} \boldsymbol{e}_{2} + x^{3} \boldsymbol{e}_{3} + x^{4} \boldsymbol{e}_{4}
It works fine for all grades but if grade(A) = 2 :
A = A^{12} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{2} + A^{13} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{3} + A^{14} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{4} + A^{23} \boldsymbol{e}_{2}\wedge \boldsymbol{e}_{3} + A^{24} \boldsymbol{e}_{2}\wedge \boldsymbol{e}_{4} + A^{34} \boldsymbol{e}_{3}\wedge \boldsymbol{e}_{4}
x \rfloor A^{-1} = \frac{A^{12} x^{2} + A^{13} x^{3} + A^{14} x^{4}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1} + \frac{- A^{12} x^{1} + A^{23} x^{3} + A^{24} x^{4}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{2} + \frac{- A^{13} x^{1} - A^{23} x^{2} + A^{34} x^{4}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{3} - \frac{A^{14} x^{1} + A^{24} x^{2} + A^{34} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{4}
(x \rfloor A^{-1}) \rfloor A = \frac{{\left ( A^{12} \right )}^{2} x^{1} - A^{12} A^{23} x^{3} - A^{12} A^{24} x^{4} + {\left ( A^{13} \right )}^{2} x^{1} + A^{13} A^{23} x^{2} - A^{13} A^{34} x^{4} + {\left ( A^{14} \right )}^{2} x^{1} + A^{14} A^{24} x^{2} + A^{14} A^{34} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1} + \frac{{\left ( A^{12} \right )}^{2} x^{2} + A^{12} A^{13} x^{3} + A^{12} A^{14} x^{4} + A^{13} A^{23} x^{1} + A^{14} A^{24} x^{1} + {\left ( A^{23} \right )}^{2} x^{2} - A^{23} A^{34} x^{4} + {\left ( A^{24} \right )}^{2} x^{2} + A^{24} A^{34} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{2} + \frac{A^{12} A^{13} x^{2} - A^{12} A^{23} x^{1} + {\left ( A^{13} \right )}^{2} x^{3} + A^{13} A^{14} x^{4} + A^{14} A^{34} x^{1} + {\left ( A^{23} \right )}^{2} x^{3} + A^{23} A^{24} x^{4} + A^{24} A^{34} x^{2} + {\left ( A^{34} \right )}^{2} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{3} + \frac{A^{12} A^{14} x^{2} - A^{12} A^{24} x^{1} + A^{13} A^{14} x^{3} - A^{13} A^{34} x^{1} + {\left ( A^{14} \right )}^{2} x^{4} + A^{23} A^{24} x^{3} - A^{23} A^{34} x^{2} + {\left ( A^{24} \right )}^{2} x^{4} + {\left ( A^{34} \right )}^{2} x^{4}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{4}
(x \rfloor A^{-1}) A =\frac{{\left ( A^{12} \right )}^{2} x^{1} - A^{12} A^{23} x^{3} - A^{12} A^{24} x^{4} + {\left ( A^{13} \right )}^{2} x^{1} + A^{13} A^{23} x^{2} - A^{13} A^{34} x^{4} + {\left ( A^{14} \right )}^{2} x^{1} + A^{14} A^{24} x^{2} + A^{14} A^{34} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1} + \frac{{\left ( A^{12} \right )}^{2} x^{2} + A^{12} A^{13} x^{3} + A^{12} A^{14} x^{4} + A^{13} A^{23} x^{1} + A^{14} A^{24} x^{1} + {\left ( A^{23} \right )}^{2} x^{2} - A^{23} A^{34} x^{4} + {\left ( A^{24} \right )}^{2} x^{2} + A^{24} A^{34} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{2} + \frac{A^{12} A^{13} x^{2} - A^{12} A^{23} x^{1} + {\left ( A^{13} \right )}^{2} x^{3} + A^{13} A^{14} x^{4} + A^{14} A^{34} x^{1} + {\left ( A^{23} \right )}^{2} x^{3} + A^{23} A^{24} x^{4} + A^{24} A^{34} x^{2} + {\left ( A^{34} \right )}^{2} x^{3}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{3} + \frac{A^{12} A^{14} x^{2} - A^{12} A^{24} x^{1} + A^{13} A^{14} x^{3} - A^{13} A^{34} x^{1} + {\left ( A^{14} \right )}^{2} x^{4} + A^{23} A^{24} x^{3} - A^{23} A^{34} x^{2} + {\left ( A^{24} \right )}^{2} x^{4} + {\left ( A^{34} \right )}^{2} x^{4}}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{4} + \frac{x^{4} \left(A^{12} A^{34} - A^{13} A^{24} + A^{14} A^{23}\right)}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{2}\wedge \boldsymbol{e}_{3} + \frac{x^{3} \left(- A^{12} A^{34} + A^{13} A^{24} - A^{14} A^{23}\right)}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{2}\wedge \boldsymbol{e}_{4} + \frac{x^{2} \left(A^{12} A^{34} - A^{13} A^{24} + A^{14} A^{23}\right)}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{1}\wedge \boldsymbol{e}_{3}\wedge \boldsymbol{e}_{4} + \frac{x^{1} \left(- A^{12} A^{34} + A^{13} A^{24} - A^{14} A^{23}\right)}{{\left ( A^{12} \right )}^{2} + {\left ( A^{13} \right )}^{2} + {\left ( A^{14} \right )}^{2} + {\left ( A^{23} \right )}^{2} + {\left ( A^{24} \right )}^{2} + {\left ( A^{34} \right )}^{2}} \boldsymbol{e}_{2}\wedge \boldsymbol{e}_{3}\wedge \boldsymbol{e}_{4}
I can’t explain why I am unable to replace the geometric product with the left contraction. It seems the trivector sum isn’t the commutator product.
I’m sure I miss something. Maybe there is a bug in galgebra. Any idea ?
Regards
Sylvain